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Abstract. The generalized effective liquid approximation (GELA) to the density functional 
theory of classical non-uniform systems reproduces all the formal properties of the free 
energy and requires only the direct correlation function of the uniform system as input. In 
the case of the freezing of hard spheresvery accurate free energies, pressures and fluid-solid 
coexistencedatacan be obtained from the GELA. The theory predicts, besides the equilibrium 
FCC solid, metastable BCC and sc phases also. 

1. Introduction 

The first-principles description of first-order phase transitions is certainly the ultimate 
goal of equilibrium statistical mechanics. Whereas the phenomenological theory of 
Landau, based on a series expansion of the free energy in terms of an order parameter, 
is usually very instructive, it cannot by itself provide a quantitative description of the 
phase transition unless the free energy has been computed by other means. The approxi- 
mate evaluations of free energies within statistical mechanics can conveniently be divided 
into three sub-groups. The first main route to the free energy proceeds through the 
evaluation of the partition function. This route quickly leads to a complicated N-body 
problem originating from the explicit dependence of the partition function on the 
system’s Hamiltonian. It can thus be followed only when the system is very simple, 
usually discrete. A second route rests on evaluating first the structural functions from the 
Born-Green-Yvon hierarchy. Here, continuous systems, with say pairwise interactions, 
can be treated in principle, but in practice it has turned out to be very difficult to go all 
the way down from the structural functions corresponding to the given potential to the 
corresponding free energy, at least for phases that are non-uniform. Finally, in the third 
route, based on the density functional theory of non-uniform systems, some of these 
difficulties can be bypassed because this theory provides us directly with an expression for 
the free energy involving only the one-body density and the two-body direct correlation 
function. 

2. The density functional theory [l] 

If we start the description of a classical equilibrium system from the grand potential 52,  
viewed as afunction of the temperature Tand afunctionalof the local chemical potential, 
u(r) = p - q ( r ) ,  consisting of the true chemical potential p and the external potential, 
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Figure 1 .  The complete hard-sphere (fluid-Fcc) 
phase diagram in the pressure ( p *  = ppu')-den- 
sity ( v  = (n/6)03p) plane as obtained from the 
GELA and compared to the simulation results of 
[4] (adapted from [3]).  Here U denotes the hard- 
sphere diameter and /3 the inverse temperature 

Figure 2. The reduced free energy per particle 
(Pvj) versus the packing fraction (7) for the hard- 
sphere fluid, FCC and BCC solids as obtained from 
the GELA (adapted from [3]). 

( P  = l/kBT). 

q ( r )  which is specifying the system's boundary conditions (such as its volume, the 
orientation of the crystal axes, the location of the different phases, and the density profile 
at the boundaries) and makes any finite system always look formally 'non-uniform', then 
we may write 

where the functional dependence is indicated, as usual, by square brackets. Because 
there is a unique relation between U(.) and the one-body density, p ( r ) ,  we may eliminate 
u(r) in favour of p( r )  by a functional Legendre transformation from the grand potential 
R to the (Helmholtz) free energy F: 

R = R(T; [ U ] )  ( 1 )  

by using the exact result 

which implicitly defines u(r) as a functional of p( r ) .  The Legendre transformation 
(2) can then always be inverted as 

6R/6u( r )  = p( r )  (3) 

by using 

whereas, as for any Legendre transformation, the second-order derivatives are inverses 
of each other: 

S F / S p ( r )  = u(r) ( 5  1 

= - 6(r  - r')  
d 2 F  62R 

6p(r)  6p(r ' ' )  bu(r") 6u(r') 
j d r "  

which, using the relations (/3 = l /k ,T)  
(- 1//3>6252/6u(r) 6u(r')  = p2 ( r ,  r')  - p( r )p ( r ' )  + 6(r  - r ' )p(r )  
/3 S 2 F / 6 p ( r )  6p( r ' )  = S(r - r ' ) / p ( r )  - C(r,  r ' ;  [PI) 

( 7 )  
(8) 
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is a statement of the Ornstein-Zernike relation between the pair density, p2(r, r’), and 
the direct correlation function (DCF), C(r, r’). The differential form (8) can also be 
integrated in density space to yield (A being here the cube of the thermal wavelength) 

/3 F [ p]  = 1 d rp ( r )  (In ( Ap (r)) - I) - d r j d r’ 1 d A j ” d A ’ p (r) p (r’ ) C(r , r’ ; [A ’ p] ) (9) 
0 0  

which is the basic equation of the density functional theory (DFT) relating the free energy 
F t o  the structural properties p( r )  and C(r, r’ ;  [ p ] ) .  

3. The generalized effective liquid approximation [2,3] 

The first step in an approximate evaluation of the RHS of (9) consists in parametrizing 
p(r) for a given phase. In the present case we will be interested in the liquid-solid 
transition of a hard-sphere system. In this case it is sufficient to assume that the density 
of the solid consists of a set of isotropic Gaussian profiles centred on the lattice sites {R}:  

so that the freezing transition can be described in terms of a single order parameter a, 
the inverse width of the Gaussian density profile, with a > 0 for the periodic bulk solid 
and a = 0 for the uniform bulk liquid. The major approximation of any DFT concerns 
then the approximation for C(r, r’; [p]). Since no information about the DCF of a solid 
is as yet available we will approximate this function by the DCF of an ‘effective’ liquid, 
Co((r - r’l; p ) ,  of uniform density 0. This replacement of an anisotropic DCF by an 
isotropic DCF is meaningful only under the integral signs of (9), so all angular dependence 
is averaged out and the correlations in the solid may resemble those of the effective 
liquid. The remaining point now concerns the determination of the relation between the 
effective liquid density, p ,  and the actual density of the solid, p(r), which this effective 
liquid is supposed to describe. This relation will be determined implicitly by imposing 
self-consistency between the excess free energy per particle of the solid and the excess 
free energy per particle of the effective liquid. Nowadays it has become customary to 
write such self-consistency relations in terms of a weighting function, W( lrl; [ p ] ) ,  as 

with p the spatial average of p(r) over the volume V .  The weighting function that 
characterizes the present generalized effective liquid approximation [3] (GELA) reads 
then: 

where CO( Ir - r‘1; p )  is the DCF of the effective liquid of density p .  
Substitution of (12) into (1 1) yields then the desired self-consistency relation between 

the effective liquid density i? and the solid density p( r )  for a given DCF of the liquid. 
Notice the difference in argument of the DCF in the numerator and in the denominator 
of (12). This difference, which is implied here by the exact relations of DFT, guarantees 
then that the formal relations between the approximate free energy of the GELA and the 
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various DCF remain the same as in the exact DFT and hence also remain exact in the limit 
of a uniform system ( p ( r )  + p).  The somewhat unexpected consequence of this is that 
the weighting function (12) cannot be normalized, other than for a uniform system, 
while the self-consistency relation (11) and (12) becomes an integral equation for b[p]  
instead of a simple transcendental equation. We have found that this integral equation 
can be solved by expanding b[Ap] around either A = 0 or A = 1 with good convergence 
properties in both cases. 

4. The freezing of hard spheres [3] 

The hard-sphere system is a very convenient testing ground for all freezing theories of the 
above type because, first of all, the temperature scales out and so the only independent 
thermodynamic variable left over is the density, while the DCF of the fluid, which is 
required as input, is available in analytic form within the Percus-Yevick approximation 
which is fairly accurate for hard spheres. When the GELA is worked out for the FCC hard- 
sphere solid very good agreement with the computer simulations is found (see figure 1). 
When the Carnahan-Starling equation of state is adopted for the hard-sphere fluid the 
fluid-solid coexistence data obtained from the GELA are almost indistinguishable from 
the simulation results (see figure 1). The only exception concerns the Lindemann 
parameter which is a structural property, while the theory was set out to determine the 
thermodynamic properties of the solid. Such structural properties are expected to be 
more sensitive to the parametrization of the density in terms of isotropic Gaussians (see 
(10)) than the thermodynamic properties themselves. Besides its high accuracy, the 
GELA has also the advantage over other DFT of hard-sphere freezing that it predicts 
metastable BCC and sc hard-sphere solids (see figure 2). This is important if one wants 
to set up a hard-sphere perturbation theory of freezing to study softer potentials for 
which the FCC structure is not the equilibrium structure. 
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